
Generic Synchronization Policies in C++

Ciaran McHale
www.CiaranMcHale.com

Contents

1 Introduction 3

2 Scoped Locks 3

3 Generic Synchronization Policies 5
3.1 The Mutex and Readers-writer Policies. . . . . . . . . . . . 6
3.2 The Producer-consumer Policy. . . . . . . . . . . . . . . . . 7
3.3 The Bounded Producer-consumer Policy. . . . . . . . . . . . 7

4 Generic Synchronization Policies in C++ 8

5 Support for Generic Synchronization Policies in Other Languages11

6 A Critique of Generic Synchronization Policies 12
6.1 Strengths of GSPs. . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Potential Criticisms of GSPs. . . . . . . . . . . . . . . . . . 12

7 Issues Not Addressed by GSPs 13
7.1 Thread Cancellation. . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3 Lock Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . 14

8 GSP Class Library 15

9 Acknowledgments 15

10 About the Author 16

1

This software and documentation are distributed under an MIT-style license (shown
below), which basically means you must not remove the copyright notice but, aside from
that, you can use or modify this software and documentation as you want. For example,
you can use it in both open-source and closed-source projects, and you can give away
the software and documentation for free or you can sell it. You can find information
about open-source licenses from theOpen Source Initiative(www.opensource.org).

TM

Copyright© 2006–2008 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

• The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

• THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

2



1 Introduction

Writing synchronization code is usually both difficult and non-portable.
Much of the difficulty in writing synchronization code is due to the use of

low-level synchronization APIs.
The portability problem arises because neither C nor C++ provide a stan-

dard library for synchronization. As a result, many operating systems provide
proprietary APIs for synchronization. Some people write a portability-layer li-
brary that hides the proprietary APIs of the underlying operating systems. Un-
fortunately, it is common for such libraries to provide a low-level, and hence
difficult to use, API.

In my experience, most uses of synchronization code in multi-threaded ap-
plications fall into a small number of high-level “usage patterns”, or what I call
generic synchronization policies(GSPs). This paper illustrates how the use of
such GSPs simplify the writing of thread-safe classes. In addition, this paper
presents a C++ class library that implements commonly-used GSPs.

2 Scoped Locks

Threading libraries provide functions that acquire and release mutual exclusion
(mutex) locks. In this paper, I usegetLock() and releaseLock() to
denote such functions. A critical section is code that is bracketed with calls to
getLock() andreleaseLock() . For example, the following is a critical
section:

getLock(mutex);
...
releaseLock(mutex);

The above critical section looks simple. However, if the code within a critical
section has conditionalreturn statements or conditionally throws exceptions
then care must be taken to release the mutex lock atall exit points of the critical
section. Figure1 shows an example of this.

In general, adding calls toreleaseLock() at every potential exit point
of a critical section clutters up the code, thus making the code more difficult
to read and maintain. Indeed, a common source of bugs in multi-threaded
applications is forgetting to add a call ofreleaseLock() at some of the
possible exit points of a critical section.

There is a useful technique that removes the need for the cluttering, error-
prone calls toreleaseLock() . This technique involves writing a class—
let’s call it ScopedMutex —that callsgetLock() andreleaseLock()

3

void foo()
{

getLock(mutex) ;
...
if (...) {

releaseLock(mutex) ;
return;

}
if (...) {

releaseLock(mutex) ;
throw anException;

}
...
releaseLock(mutex) ;

}

Figure 1:An operation with a critical section

in its constructor and destructor. You can see a pseudocode implementation of
this class in Figure2.

class ScopedMutex {
public:

ScopedMutex (Mutex & mutex)
: m mutex(mutex)

{
getLock(m mutex);

}
˜ScopedMutex () {

releaseLock(m mutex);
}

protected:
Mutex & m mutex;

};

Figure 2:A pseudocodeScopedMutex class

Now, instead of explicitly callinggetLock() andreleaseLock() in
the body of an operation, you can just declare aScopedMutex variable lo-
cal to the function. Figure3 shows an example of this. When the function
is called, the constructor of theScopedMutex variable is invoked and this

4



callsgetLock() . Then, when the function terminates, the destructor of the
ScopedMutex variable is invoked and this callsreleaseLock() . This
happens regardless of whether the function returns early (line 1), throws an
exception (line 2) or runs to completion (line 3).

void foo()
{

ScopedMutex scopedLock(mutex) ;
...
if (...) return; // line 1
if (...) throw anException; // line 2
...

} // line 3

Figure 3:An operation with a scoped mutex lock

If you compare the code in Figures1 and3 then you will see that the latter
code (which uses theScopedMutex class) is shorter and easier to read than
the former.

This technique of using a constructor/destructor class for synchronization
is partially well-known within the C++ community. I say this for two reasons.

First, my experience as a consultant and trainer has given me the opportu-
nity to work with many C++ programmers in many different organization. I
have found that about half the programmers I work with are familiar with this
technique and view it as being a basic C++ idiom, while the same technique is
new to the other half.

Second, among programmers who have used this constructor/destructor
technique for synchronization, usage of this technique invariably is confined to
mutual exclusion (andoccasionallyreaders-writer locks). However, this tech-
nique is applicable to other, more complex synchronization code too (which is
the focus of this paper).

Before discussing how to apply this technique to other synchronization
code, it is necessary to take a slight detour. In particular, I have to introduce a
new concept: that ofgeneric synchronization policies.

3 Generic Synchronization Policies

C++ supportstemplatetypes. For example, a list class might be written as:

template<T> class List { ... };

5

Once implemented, this template type can be instantiated multiple times to
obtain, say, a list ofint , a list ofdouble and a list ofWidget :

List<int> myIntList;
List<double> myDoubleList;
List<Widget> myWidgetList;

The ability to define template types is not unique to C++. Several other
languages provide similar functionality, although often there are differences in
terminology and syntax. For example, some languages use the termgeneric
typesrather thantemplate types, and the type parameters might be enclosed
within [ and] instead of< and>.

The concept of genericity is not restricted to types. It can be applied to
synchronization too, as I now discuss.

3.1 The Mutex and Readers-writer Policies

Using a pseudocode notation, I can declare some well-known synchronization
policies as follows:

Mutex[Op]
RW[ReadOp, WriteOp]

In this notation, the name of the generic synchronization policy is given
first, and is then followed by a parameter list enclosed in square brackets. Each
parameter denotes a set of operation names. For example, theMutex policy is
instantiated upon a set of operations (Op), while theRW(readers-writer) policy
is instantiated upon a set of read-style operations (ReadOp) and a set of write-
style operations (WriteOp ).

Consider a class that has two read-style operations calledOp1 andOp2,
and a write-style operation calledOp3. I instantiate theRWpolicy upon these
operations as follows:

RW[{Op1, Op2}, {Op3}]

Likewise, an instantiation of theMutex policy upon these three operations
is written as follows:

Mutex[ {Op1, Op2, Op3 }]

6



3.2 The Producer-consumer Policy

The producer-consumer policy is useful when a buffer is used to transfer data
from one thread (the producer) to another thread (the consumer). The producer
threadputsitems into the buffer and then, sometime later, the consumer thread
getsthese items. If the consumer thread tries to get an item from an empty
buffer then it will be blocked until the buffer is not empty. Furthermore, the
put-style and get-style operations execute in mutual exclusion; this is to prevent
the buffer from becoming corrupted due to concurrent access. This policy is
written as follows:

ProdCons[PutOp, GetOp, OtherOp]

OtherOp denotes any other (non put-style and non get-style) operations
on the buffer class. For example, perhaps there is an operation on the buffer
that returns a count of how many items are currently in the buffer. Such an
operation might need to run in mutual exclusion with the put-style and get-style
operations to ensure its correct operation. If a buffer-style class has operations
called insert() , remove() and count() then you can instantiate the
ProdCons policy on the class as follows:

ProdCons[ {insert }, {remove }, {count }]
If the class does not have acount() operation then you can instantiate

theProdCons policy on it as follows:

ProdCons[ {insert }, {remove }, {}]
In this case, theOtherOp parameter of the policy is instantiated upon an
emptyset of operations names.

3.3 The Bounded Producer-consumer Policy

A common variation of the producer-consumer policy is theboundedproducer-
consumer policy, in which the buffer has a fixed size. This prevents the buffer
from growing infinitely large if one thread puts items into the buffer faster than
the other thread can get them. In this policy, if the producer thread tries to put
an item into an already-full buffer then it will be blocked until the buffer is not
full. This policy is written as follows:

BoundedProdCons (int size) [PutOp, GetOp, OtherOp]

Notice that the size of the buffer is specified as a parameter to the name
of the policy. Such parameters are usually instantiated upon a corresponding
parameter to the constructor of the buffer; an example of this will be shown
later (in Figure7 on page11).

7

4 Generic Synchronization Policies in C++

The discussion in Section3 focussed on theconceptof GSPs. I now explain
how to implement GSPs in C++.

Figure4 shows the mapping of theMutex[Op] policy into a C++ class
using POSIX threads. Note that, in order to keep the code concise, error checks
on the return values of the POSIX threads library calls have been omitted.

1 class GSP Mutex {
1 public:
3 GSPMutex() { pthread mutex init(m mutex, 0); }
4 ˜GSP Mutex() { pthread mutex destroy(&m mutex); }
5
6 class Op {
7 public:
8 Op(GSP Mutex &) : m data(data)
9 { pthread mutex lock(&m data.m mutex); }

10 ˜Op() { pthread mutex unlock(&m data.m mutex); }
11 protected:
12 GSPMutex & m data;
13 };
14
15 protected:
17 pthread mutex t m mutex;
16 friend class ::GSP Mutex::Op;
18 };

Figure 4:Mapping ofMutex[Op] into a C++ class

The mapping from a GSP into a C++ class is performed as follows:

1. The name of the C++ class is the same as the name of the GSP, but with a
"GSP " prefix. The prefix is used to prevent name-space pollution. So,
in Figure4 theMutex GSP is implemented by theGSPMutex class.

2. The class has one or more instance variables (line 17) that provide stor-
age for the mutex. The constructor and destructor of the class (lines 3
and 4) initialize and destroy the instance variable(s).

3. The Mutex[Op] GSP has a parameter calledOp. This translates into
a nested class (lines 6–13) with the same name. If a GSP has several
parameters then each parameter translates into a separate nested class;
an example of this will be shown later.

8



4. Each nested class has one instance variable (line 12), which is a reference
to the outer class. This instance variable is initialized from a parameter
to the constructor of the inner class (line 8).

5. The constructor and destructor of the nested class get and release the
lock (lines 9 and 10) stored in the instance of the outer class.

As another example, Figure5 shows how theRW[ReadOp, WriteOp]
GSP maps into a C++ class. Notice that because this GSP takes two parameters,
there are two nested classes.

class GSP RW{
public:

GSPRW() { / * initialize the readers-writer lock * / }
˜GSP RW() { / * destroy the readers-writer lock * / }

class ReadOp {
public:

ReadOp(GSP RW & data) : m data(data)
{ / * acquire read lock * / }

˜ReadOp () { / * release read lock * / }
protected:

GSPRW & m_data;
};

class WriteOp {
public:

WriteOp (GSP RW & data) : m data(data)
{ / * acquire write lock * / }

˜WriteOp () { / * release write lock * / }
protected:

GSPRW & m_data;
};

protected:
... // Instance variables required to implement a

// readers-writer lock
friend class ::GSP_RW::ReadOp;
friend class ::GSP_RW::WriteOp;

};

Figure 5:TheGSPRWclass with nestedReadOpandWriteOp classes

9

Instantiating a GSP upon the operations of a C++ class involves the follow-
ing three steps:

1. #include the header file for the GSP. The name of the header file is
the same as name of the GSP class, but written in lowercase letters. For
example, the header file for theGSPRWclass is"gsp rw.h" .

2. Add an instance variable to the C++ class that is to be synchronized. The
instance variable’s type is that of the GSP’s outer class.

3. Inside the body of each operation that is to be synchronized, declare a
local variable, the type of which is that of a nested class of the GSP.

The instantiation ofRW[{Op1, Op2}, {Op3}] in Figure6 illustrates
these steps.

#include "gsp rw.h"
class Foo {
public:

Foo() { ... }
˜Foo() { ... }
void Op1(...) {

GSPRW::ReadOp scopedLock(m sync);
... // normal body of operation

}
void Op2(...) {

GSPRW::ReadOp scopedLock(m sync);
... // normal body of operation

}
void Op3(...) {

GSPRW::WriteOp scopedLock(m sync);
... // normal body of operation

}
protected:

GSPRW msync;
... // normal instance variables of class

};

Figure 6:Instantiation ofGSPRW

As a final example, Figure7 shows a class that is instantiated with:

BoundedProdCons (int size) [PutOp, GetOp, OtherOp]

10



This policy takes a parameter that indicates the size of the buffer. This parame-
ter is obtained from thebufSize parameter of the class’s constructor.

#include "gsp boundedprodcons.h"
class WidgetBuffer {
public:

WidgetBuffer(int bufSize) : m sync(bufSize) { ... }
˜WidgetBuffer() { ... }

void insert(Widget * item) {
GSPBoundedProdCons::PutOp scoped lock(m sync);
... // normal body of operation

}

Widget * remove() {
GSPBoundedProdCons::GetOp scoped lock(m sync);
... // normal body of operation

}
protected:

GSPBoundedProdCons m sync;
... // normal instance variables of class

};

Figure 7:Instantiation ofGSPBoundedProdCons

5 Support for Generic Synchronization Policies in
Other Languages

The implementation of GSPs shown in this paper relies upon constructors
and destructors to automate the execution of synchronization code. Although
object-oriented languages usually provide constructors, not all object-oriented
languages provide destructors, especially languages that have built-in garbage
collectors. This may lead readers to conclude that GSPs cannot be imple-
mented in existing languages that do not provide destructors. While this may
be so, it would be possible for designers offuture languages to incorporate
support for GSPs into their language design. For example, in my Ph.D. thesis
[McH94] I show how to add support for GSPs to the compiler of an object-
oriented language that uses garbage collection instead of destructors.

11

6 A Critique of Generic Synchronization Policies

I now point out some benefits and potential drawbacks of GSPs.

6.1 Strengths of GSPs

First, GSPs provide a good form of skills reuse. In particular, it is a lot easier to
usea GSP than it is toimplementone. Thus, a programmer skilled in synchro-
nization programming can implement whatever GSPs are needed for a project,
and then other, lesser skilled, programmers can use these pre-written GSPs.

Second, GSPs aid code readability and maintainability by separating syn-
chronization code from the “normal”, functional code of a class.

Third, as I discussed in Section2, placing synchronization code in the con-
structor and destructor of the GSP classes means that locks are released even
if an operation terminates by returning early or throwing an exception. This
eliminates a common source of bugs in multi-threaded programs.

Fourth, GSPs provide not only ease of use; they also provide a portability
layer around the underlying synchronization primitives. Of course, some com-
panies have developed in-house, portability libraries that hide the differences
between synchronization primitives on various platforms, and some other com-
panies make use of third-party portability libraries, such as the Threads.h++
library from RogueWave. The use of GSPs is compatible with such existing
libraries: GSPs can be implemented just as easily on top of Threads.h++ (or
some other portability library) as they can be implemented directly on top of
operating-system specific synchronization primitives.

Finally, the implementation of a GSP can be inlined. Thus, the use of GSPs
need not impose a performance overhead.

6.2 Potential Criticisms of GSPs

Some readers might be thinking: “GSPs are limited; they cannot handleall
the synchronization needs I might have.” However, in many activities, a dis-
proportionately large amount of results come from a relatively small amount
of investment. This is generally known as the 80/20 principle [Koc00]. In my
experience, this applies to the synchronization requirements of applications.
A small set of GSPs is likely to suffice for most of the synchronization needs
of programmers. So, even if a small set of pre-written GSPs cannot handle
all the synchronization needs that a programmer will face, the 80/20 principle
suggests that the use of GSPs would be usefuloften enoughto justify their use.

12



Of course, people arenot restricted to just a small set of pre-written GSPs.
People can define new GSPs. For example, perhaps a programmer needs to
write some project-specific synchronization code. Even if this synchronization
code will be used in just one place in the project, it is hardly any additional
work to implement this as a GSP and then instantiate it, rather than to imple-
ment it “in-line” in the operations of a class. Doing do offers several benefits:

1. Implementing the synchronization code as a GSP is likely to improve
readability and maintainability of the synchronization codeand the se-
quential code of the project.

2. If the programmer later discovers another place that needs to use the
same policy then the GSP can be re-used directly, rather than having to
re-use in-lined code via copy-n-paste.

Some other readers might be thinking: “GSPs are not new; ‘GSP’ is just a
new name for an existing C++ programming idiom”. The claim that GSPs are
based on an already-known C++ idiom (theScopedMutex class discussed in
Section2) is entirely true. Indeed, theScopedMutex class is a GSP in all
but name. However, as discussed in Section2, the C++ idiom that underlies
GSPs was previously used only for mutex andoccasionallythe readers-writer
policies. A significant contribution of GSPs is in pointing out that the same
technique can be used for most, if not all, synchronization policies.

7 Issues Not Addressed by GSPs

GSPs illustrate the 80/20 principle: most of the synchronization requirements
of programmers can be satisfied by a small collection of GSPs. However, there
are some synchronization issues that arenot tackled by GSPs. I now briefly
discuss these issues below, so that readers can be forewarned about when the
use of GSPs is not suitable.

7.1 Thread Cancellation

The POSIX threads specification provides a mechanism for a thread to becan-
celled, that is, terminated gracefully. When a thread is cancelled, it is important
that the thread has a chance to do some tidying up before it is terminated, for
example, the thread may wish to release locks that it holds. This is achieved by
having the programmer register callback functions that will be invoked in the
event of the thread being cancelled. The current implementation of GSPs does
not provide support for the thread cancellation capability of POSIX threads.

13

This is not due to any intrinsic incompatibility between GSPs and thread can-
cellation. Rather it is simply due to the author never having needed to make
use of thread cancellation. Integrating GSPs with thread cancellation is left as
an exercise to interested readers.

7.2 Timeouts

Some thread packages provide a timeout capability on synchronization primi-
tives. By using this, a programmer can specify an upper time limit on how long
a thread should wait to, say, get a lock. The current implementation of GSPs
doesnot provide a timeout capability. There are two reasons for this.

First, timeouts are rarely needed and hence, by following the 80/20 princi-
ple, I decided to not bother supporting them.

Second, implementing a timeout capability is relatively complex with the
APIs of some threads packages. For example, aMutex policy withouta time-
out capability can be implemented trivially in POSIX threads by invoking func-
tions upon an underlying mutex type. In contrast, implementing aMutex pol-
icy with a timeout capability in POSIX threads necessitates the use of a mutex
variableand a condition variable; the resulting algorithm is more complex to
write and maintain, and it incursat least twice as much performance over-
head as aMutex without a timeout capability. This additional performance
overhead suggests that if some programmers decide they require aMutex pol-
icy with a timeout capability then they should implement it as anewGSP, say,
TimeoutMutex , rather than add the timeout capability to the existingMutex
policy. In this way, programmers can use theTimeoutMutex policy on the
few occasions when they need to, and can use the more efficientMutex policy
on all other occasions.

7.3 Lock Hierarchies

GSPs are useful for classes or objects that have self-contained synchronization.
However, sometimes the synchronization requirements ofseveralclasses are
closely intertwined, and a programmer needs to acquire locks on two (or more)
objects before carrying out a task. The need to acquire locks on several objects
at the same time is commonly referred to as alock hierarchy. Attempting to
acquire a lock hierarchy can result in deadlock if done incorrectly. Algorithms
for acquiring lock hierarchies safely are outside the scope of this paper, but can
be found elsewhere [But97]. The point to note is that algorithms for acquir-
ing lock hierarchies safely require unhindered access to the locking primitives.

14



This is in opposition to GSPs, which completely encapsulate the underlying
synchronization primitives.

8 GSP Class Library

This paper accompanies a library of GSP classes. You can download this pa-
per, and its library fromwww.CiaranMcHale.com/download. The library im-
plements all the GSPs discussed in this paper, that is,GSPMutex , GSPRW,
GSPProdCons and GSPBoundedProdCons . The library implements
these GSPs for the following threads packages: Solaris threads, DCE Threads,
POSIX threads and Windows threads. Dummy implementations of these GSPs
for non-threaded systems are also provided; this makes it possible to write a
class that can be used in both sequential and multi-threaded applications.

All the GSP classes are implemented with inline code in header files. Be-
cause of this, to make use of a GSP you need only#include the correspond-
ing header file; there is no GSP library to link into your application. The name
of the header file for a GSP is the same as the name of the GSP class, but writ-
ten in lowercase letters. For example, the header file for theGSPRWclass is
"gsp rw.h" .

You should use the-D<symbol_name> option on your C++ compiler to
define one of the following symbols:

• P_USE_WIN32_THREADS

• P_USE_POSIX_THREADS

• P_USE_DCE_THREADS

• P_USE_SOLARIS_THREADS

• P_USE_NO_THREADS

The symbol instructs the GSP class which underlying threading package it
should use.

9 Acknowledgments

The concept of GSPs has its roots in my Ph.D. thesis [McH94]. Research
for this Ph.D. was partially funded by the Comandos ESPRIT project and was
carried out while I was a member of the Distributed Systems Group (DSG)
in the Department of Computer Science, Trinity College, Dublin, Ireland. I

15

wish to thank DSG for their support. I also wish to thank colleagues in IONA
Technologies for their comments on earlier drafts of this paper.

10 About the Author

Ciaran McHale works for IONA Technologies (www.iona.com), which spe-
cializes in standards-based, distributed middleware. He has worked there since
1995 and is a principal consultant. He has a Ph.D. in computer science from
Trinity College, Dublin, Ireland. Interested readers can find more information
about Ciaran McHale at his personal web-site:www.CiaranMcHale.com.

References

[But97] David Butenhof. Programming with POSIX Threads. Addison-
Wesley, 1997.

[Koc00] Richard Koch. The 80/20 Principle: The Secret of Achieving
More With Less. Nicholas Breealey Publishing Ltd., May 2000.
ISBN: 187881680. 312 pages.

[McH94] Ciaran McHale. Synchronisation in Concurrent, Object-oriented
Languages: Expressive Power, Genericity and Inheritance.
PhD thesis, Department of Computer Science, Trinity College,
Dublin 2, Ireland, October 1994. Available for download at
www.CiaranMcHale.com/download/phd-thesis.pdf.

16


