
1

Generic Synchronization
Policies in C++

Ciaran McHale

CiaranMcHale.com

Generic Synchronization Policies in C++ 2

License
Copyright (c) 2006–2008 Ciaran McHale

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Generic Synchronization Policies in C++ 3

Introduction
n Most people know that writing synchronization code is:

- Difficult: APIs are low-level
- Non-portable: many threading APIs: POSIX, Windows, Solaris, DCE, …

n In practice, most synchronization code implement a small
number of high-level “usage patterns”:

- Let’s call these generic synchronization policies (GSPs)
- The most common GSPs can be implemented as a C++ library

n Using GSPs in applications:
- Is much easier than using low-level APIs
- Encapsulates the underlying threading package à provides portability

4

1. Scoped Locks

Generic Synchronization Policies in C++ 5

Critical section
n The following (pseudocode) function uses a critical section:

void foo()
{

getLock(mutex);
...
releaseLock(mutex);

}

n The above code is very simple. However…

n Complexity increases if the function has several exit points:
- Because releaseLock() must be called at each exit point
- Examples of extra exit points:

- Conditional return statements
- Conditionally throwing an exception

Generic Synchronization Policies in C++ 6

Critical section with multiple exit points
void foo()
{

getLock(mutex);
...
if (...) {

releaseLock(mutex);
return;

}
if (...) {

releaseLock(mutex);
throw anException;

}
...
releaseLock(mutex);

}

Have to call releaseLock() at
every exit point from the function

Have to call releaseLock() at
every exit point from the function

Generic Synchronization Policies in C++ 7

Critique
n Needing to call releaseLock() at every exit point:

- Clutters up the “business logic” code with synchronization code
- This clutter makes code harder to read and maintain

n Forgetting to call releaseLock() at an exit point is a
common source of bugs

n There is a better way…

Generic Synchronization Policies in C++ 8

Solution: ScopedMutex class
n Define a class called, say, ScopedMutex:

- This class has no operations! Just a constructor and destructor
- Constructor calls getLock()
- Destructor calls releaseLock()

n Declare a ScopedMutex variable local to a function
- At entry to function à constructor is called à calls getLock()
- At exit from function à destructor is called à calls releaseLock()

n The following two slides show:
- Pseudocode implementation of ScopedMutex class
- Use of ScopedMutex in a function

Generic Synchronization Policies in C++ 9

The ScopedMutex class
class ScopedMutex {
public:

ScopedMutex(Mutex & mutex)
: m_mutex(mutex)

{ getLock(m_mutex); }

~ScopedMutex()
{ releaseLock(m_mutex); }

private:
Mutex & m_mutex;

};

Generic Synchronization Policies in C++ 10

Use of ScopedMutex
void foo()
{

ScopedMutex scopedLock(mutex);
...
if (...) { return; }
if (...) { throw anException; }
...

}

No need to call releaseLock() at
every exit point from the function!

No need to call releaseLock() at
every exit point from the function!

Generic Synchronization Policies in C++ 11

Comments on ScopedMutex
n This technique is partially well known in the C++ community:

- 50% of developers the author worked with already knew this technique
- They considered it to be a “basic” C++ coding idiom
- Other 50% of developers had not seen the technique before

n Of the developers who already knew this technique:
- They all used it for mutex locks
- Only a few knew it could be used for readers-writer locks too
- Nobody knew it could be used for almost any type of synchronization

code

n Contribution of this presentation:
- Generalize the technique so it can be used much more widely

n To explain how to do this, I need to take a slight detour:
- Have to introduce the concept of generic synchronization policies

12

2. The Concept of Generic Synchronization Policies

Generic Synchronization Policies in C++ 13

Genericity for types
n C++ provides template types

n Example of a template type definition:

template<t> class List { ... };

n Examples of template type instantiation:

List<int> myIntList;
List<double> myDoubleList;
List<Widget> myWidgetList;

n Some other languages provide a similar capability,
often with different terminology and syntax

- Perhaps called generic types instead of template types
- Perhaps surround type parameters with [] instead of <>

Generic Synchronization Policies in C++ 14

Genericity for synchronization policies
n Using a pseudocode notation, here are declarations of mutual

exclusion and readers-writer policies

Mutex[Op]
RW[ReadOp, WriteOp]

n In above examples, each parameter is a set of operations

n Example instantiations on operations Op1, Op2 and Op3
Mutex[{Op1, Op2, Op3}]
RW[{Op1, Op2}, {Op3}]

Generic Synchronization Policies in C++ 15

Producer-consumer policy
n Useful when:

- A buffer is used to transfer data between threads
- A producer thread puts items into the buffer
- A consumer thread gets items from the buffer
- If the buffer is empty when the consumer tries to get an item then the

consumer thread blocks
- The buffer might have other operations that examine the state of the

buffer

n In pseudocode notation, the policy declaration is:

ProdCons[PutOp, GetOp, OtherOp]

n Example instantiations:

ProdCons[{insert}, {remove}, {count}]
ProdCons[{insert}, {remove}, {}]

Generic Synchronization Policies in C++ 16

Bounded producer-consumer policy
n Variation of the producer-consumer policy:

- Buffer has a fixed size
- If the buffer is full when the producer tries to put in an item then the

producer thread blocks

n In pseudocode notation, policy is:

BoundedProdCons(int size)[PutOp, GetOp, OtherOp]

n Typically, the size parameter is instantiated on a parameter
to the constructor of the buffer class

- An example instantiation will be shown later

17

3. Generic Synchronization Policies in C++

Generic Synchronization Policies in C++ 18

Mapping Mutex[Op] into C++
class GSP_Mutex {
public:
GSP_Mutex() { /* initialize m_mutex */ }
~GSP_Mutex() { /* destroy m_mutex */ }
class Op {
public:
Op(GSP_Mutex & data) : m_data(data)
{ getLock(m_data.m_mutex); }
~Op()
{ releaseLock(m_data.m_mutex); }

private:
GSP_Mutex & m_data;

};
private:

friend class ::GSP_Mutex::Op;
OS-specific-type m_mutex;

};

Class name = “GSP_”
+ name of policy

Class name = “GSP_”
+ name of policy

A nested class
for each policy

parameter

A nested class
for each policy

parameter

Constructor & destructor
of nested class get and
release locks stored in

the outer class

Constructor & destructor
of nested class get and
release locks stored in

the outer class

Constructor & destructor
of outer class initialize and

destroy locks

Constructor & destructor
of outer class initialize and

destroy locks

Generic Synchronization Policies in C++ 19

Mapping RW[ReadOp, WriteOp] into C++
class GSP_RW {
public:
GSP_RW();
~GSP_RW();

class ReadOp {
public:
ReadOp(GSP_RW & data);
~ReadOp();

};

class WriteOp {
public:
WriteOp(GSP_RW & data);
~WriteOp();

};
};

This policy has two
parameters so there are

two nested classes

This policy has two
parameters so there are

two nested classes

Generic Synchronization Policies in C++ 20

Mapping BoundedProdCons into C++
n This is the mapping for

BoundedProdCons(int size)[PutOp, GetOp, OtherOp]

class GSP_BoundedProdCons {
public:
GSP_BoundedProdCons(int size);
~ GSP_BoundedProdCons();
class PutOp {...};
class GetOp {...};
class OtherOp {...};

};

The size parameter to the
policy maps into a parameter
to the constructor of the class

The size parameter to the
policy maps into a parameter
to the constructor of the class

This policy has three
parameters so there are

three nested classes

This policy has three
parameters so there are

three nested classes

Generic Synchronization Policies in C++ 21

Instantiating GSP_RW[ReadOp, WriteOp]
#include “gsp_rw.h”

class Foo {
private:
GSP_RW m_sync;

public:

void op1(...) {
GSP_RW::ReadOp scopedLock(m_sync);
...

}

void op2(...) {
GSP_RW::WriteOp scopedLock(m_sync);
...

}
};

#include header file (name of
class written in lowercase)
#include header file (name of
class written in lowercase)

Add instance variable
whose type is name of
policy’s outer class

Add instance variable
whose type is name of
policy’s outer class

Synchronize an operation
by adding a local variable
whose type is a nested
class of the policy

Synchronize an operation
by adding a local variable
whose type is a nested
class of the policy

Generic Synchronization Policies in C++ 22

Instantiating GSP_BoundedProdCons
#include “gsp_boundedprodcons.h”

class Buffer {
private:
GSP_BoundedProdCons m_sync;

public:
Buffer(int size) : m_sync(size) { ... }

void insert(...) {
GSP_BoundedProdCons::PutOp scopedLock(m_sync);
...

}

void remove(...) {
GSP_BoundedProdCons::GetOp scopedLock(m_sync);
...

}
};

The size parameter of the
policy is initialized with value of
a parameter to the constructor

The size parameter of the
policy is initialized with value of
a parameter to the constructor

23

4. Critique

Generic Synchronization Policies in C++ 24

Strengths of GSPs
n Only one person needs to know how to implement GSPs

- Trivial for everyone else to instantiate GSPs

n Separates synchronization code from “business logic” code
- Improve readability and maintainability of both types of code

n Removes a common source of bugs:
- Locks are released even if an operation throws an exception

n Improves portability:
- API of GSPs does not expose OS-specific details of synchronization

n Efficiency:
- GSPs can be implemented with inline code

Generic Synchronization Policies in C++ 25

Potential criticisms fo GSPs
n “Can they handle all my synchronization needs?”

- 80/20 principle: most synchronization needs can be handled by just a
small library of GSPs

- You are not restricted to a library of pre-written GSPs. Instead…
- You can write new GSPs if the need arises

n “GSPs are just a ScopedMutex with a new name”
- The “just” part is inaccurate
- GSPs generalize the ScopedMutex concept so it can be used for a

much wider set of synchronization policies

Generic Synchronization Policies in C++ 26

Issues not addressed
n GSPs do not address:

- POSIX thread cancellation
- Timeouts
- Lock hierarchies

n In the author’s work, these issues arise infrequently so he did
not bother to support them

- GSPs could probably be extended to support the above issues

27

5. Ready-to-run GSPs

Generic Synchronization Policies in C++ 28

Ready-to-run GSPs
n A library of ready-to-use GSPs is available:

- Download from www.CiaranMcHale.com/download
- Documentation provided in multiple formats:

- Manual: LaTeX (source), PDF & HTML
- Slides: PowerPoint, PDF and N-up PDF

n Library contains all GSPs discussed in this paper:
- Mutex[Op]
- RW[ReadOp, WriteOp]
- ProdCons[PutOp, GetOp, OtherOp]
- BoundedProdCons(int size)[PutOp, GetOp, OtherOp]

n GSPs are implemented for multiple thread packages:
- POSIX, Solaris, Windows, DCE
- Dummy (for non-threaded applications)

http://www.CiaranMcHale.com/download

Generic Synchronization Policies in C++ 29

Using GSP classes
n Define one of the following preprocessor symbols before you
#include a GSP header file

- P_USE_POSIX_THREADS
- P_USE_SOLARIS_THREADS
- P_USE_WIN32_THREADS
- P_USE_DCE_THREADS
- P_USE_NO_THREADS

n Typically done with –D<symbol> command-line option to
compiler

Generic Synchronization Policies in C++ 30

Summary
n GSPs are a generalization of the ScopedMutex class:

- Out-of-the-box support for mutual-exclusion, readers-writer and
(bounded) producer-consumer policies

- You can write new GSPs if the need arises

n Benefits:
- Makes it trivial to add synchronization to a C++ class
- Makes code easier to read and maintain
- Portability across multiple thread packages
- Minimal performance overhead due to inline implementation

n All software and documentation is available:
- MIT-style license (open-source, non-viral)
- Download from www.CiaranMcHale.com/download

-

http://www.CiaranMcHale.com/download

